Combination of Variety, At-Planting Treatment, and Postemergence Fungicide for Control of Rhizoctonia Crown and Root Rot of Sugarbeet

Jason R. Brantner and Ashok K. Chanda University of Minnesota, NWROC

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴⁴

Integrated Disease Management

Many definitions
Use all the help you can get

Don't rely on one method of control

Weigh the impact on your wallet and environment

Control methods available for *Rhizoctonia* on sugarbeet

Rotation

- Length
- Crop choice & weed control
- Genetic resistance
- Early planting
- At-planting fungicides
 - Seed treatments (\$13+ per acre)
 - In-furrow (\$24+ per acre)

Postemergence fungicides (\$24+ per acre plus application cost

Control methods available for *Rhizoctonia* on sugarbeet

Rotation

- Length
- Crop choice & weed control
- Genetic resistance
- Early planting
- At-planting fungicides
 - Seed treatments (\$12+ per acre)
 - In-furrow (\$24+ per acre)

Postemergence fungicides (\$24+ per acre plus application cost

Varieties

Variety	Rhizoc rating (2-Yr mean)	Emerg. (2-Yr %)	Rev/Ton (2-Yr %)	Rev/Acre (2-Yr %)
Resistant (HM 4302RR)	3.5	58	105	100
Susceptible (HM 4303RR)	5.2	61	107	103

Data from American Crystal Sugar Company official variety trials (Niehaus, 2014)

Materials & Methods

At-planting treatments

Application	Product	Active ingredient	Rate (g a.i./unit)
Control	None	None	-
Seed	Metlock Suite	Metconazole + rizolex	0.21 + 0.5
Seed	Kabina ST	Penthiopyrad	14
Seed	Metlock + Kabina	Metcon + rizo + penthio	0.21 + 0.5 + 7
Seed	Sedaxane	Sedaxane	2.5
In-furrow	Quadris	Azoxystrobin	9.5 fl oz prod/A

Each variety with each at-planting treatment $(2 \times 6 = 12)$

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

Postemergence treatments

Each variety by at-planting treatment combination

- 1. Stand-alone (no postemergence)
- 2. Postemergence Quadris application
 - 14.3 fl oz product/A in a 7-inch band
 - Applied June 25 (5 weeks after planting)

$(12 \times 2 = 24)$

Trial information

Plots inoculated with Rhizoctonia solaniinfested barley grain prior to planting Plot size: 6 rows by 30 ft long 4 replicates in RCB design Planted May 21 at 4.5-inch spacing - Starter fertilizer (10-34-0) applied at 3 GPA - Counter 20G applied at 9 lb/A – Glyphosate on June 4 & 23 and Sept. 3

UNIVERSITY OF MINNESOTA
Driven to Discover⁵⁴⁴

Materials & Methods

Data collected

- Stand counts
- Rhizoctonia root rot ratings (0-7 scale)
 Number of harvested roots
 Yield
 Quality

Environment

Late planting (May 21) into warm and wet soil
 Average 4-inch soil temp reached 60°F 4 days after planting

Month	Rainfall (inches)
June	6.8
July	2.2
August	1.7

High early-season disease pressure
 Low mid- to late-season disease pressure

Stand

Significant variety by at-planting treatment interactions

- Relative efficacy of treatments was not the same on resistant and susceptible varieties
- Significant difference between varieties

Variety x at-planting treatment

Resistant variety

Susceptible variety

Untreated Control

Resistant

Susceptible

UNIVERSITY OF MINNESOTA Driven to Discover™

Results

Harvest data

No significant interactions

- Relative efficacy of treatments was similar on resistant and susceptible varieties
- Significant difference between varieties
- Significant differences among treatments
- No effect of postemergence Quadris

Variety matters

	No. harv.	RCRR	Yield		Sucrose	
Variety	roots	(0-7)	ton/A	%	lb/ton	lb/A
Resistant	133	2.7	24.5	17.1	316	7747
Susceptible	77	4.2	20.3	17.1	314	6426
ANOVA	***	***	***	NS	NS	***

*** = significant at P = 0.001NS = not significantly different

There are effective at-planting treatment options

At-planting	No. harv.	RCRR	Yield		Sucrose	
treatment	roots	(0-7)	ton/A	%	lb/ton	lb/A
Control	73 b	4.6 a				
Metlock Suite	80 b	4.2 a				
Kabina ST	117 a	2.9 b				
Met + Kab	116 a	3.2 b				
Sedaxane	125 a	2.9 b				
Quadris IF	120 a	2.6 b				
LSD (<i>P</i> =.05)	16.8	0.7				

LSD = Fisher's protected least significant difference NS = not significantly different

There are effective at-planting treatment options

At-planting	No. harv.	RCRR	Yield		Sucrose	
treatment	roots	(0-7)	ton/A	%	lb/ton	lb/A
Control	73 b	4.6 a	18.3 c	17.2		
Metlock Suite	80 b	4.2 a	21.4 b	17.0		
Kabina ST	117 a	2.9 b	23.9 a	17.5		
Met + Kab	116 a	3.2 b	23.0 ab	16.8		
Sedaxane	125 a	2.9 b	23.1 ab	17.2		
Quadris IF	120 a	2.6 b	24.5 a	17.2		
LSD (<i>P</i> =.05)	16.8	0.7	2.3	NS		

LSD = Fisher's protected least significant difference NS = not significantly different

There are effective at-planting treatment options

At-planting	No. harv.	RCRR	Yield	Sucrose		
treatment	roots	(0-7)	ton/A	%	lb/ton	lb/A
Control	73 b	4.6 a	18.3 c	17.2	315	5795 c
Metlock Suite	80 b	4.2 a	21.4 b	17.0	312	6713 b
Kabina ST	117 a	2.9 b	23.9 a	17.5	324	7746 a
Met + Kab	116 a	3.2 b	23.0 ab	16.8	309	7153 ab
Sedaxane	125 a	2.9 b	23.1 ab	17.2	317	7353 ab
Quadris IF	120 a	2.6 b	24.5 a	17.2	316	7757 a
LSD (<i>P</i> =.05)	16.8	0.7	2.3	NS	NS	845

LSD = Fisher's protected least significant difference NS = not significantly different

Postemergence not effective when late-season environment is not favorable for disease

Postemerg.	No. harv.	RCRR	Yield		Sucrose	
treatment	roots	(0-7)	ton/A	%	lb/ton	lb/A
None	105	3.4	22.3	17.1	316	7058
Quadris	106	3.4	22.5	17.1	314	7115
ANOVA	NS	NS	NS	NS	NS	NS

NS = not significantly different

Choosing a resistant variety is better than protecting a susceptible variety

At-planting	No. harvested/100 ft of row		Recov. Su	crose (lb/A)
treatment	Resistant	Susceptible	Resistant	Susceptible
Control	94	52		
Kabina ST	143	91		
Quadris IF	140	101		

Choosing a resistant variety is better than protecting a susceptible variety

At-planting	No. harvested/100 ft of row		Recov. Sucrose (Ib/A)	
treatment	Resistant	Susceptible	Resistant	Susceptible
Control	94	52	6616	4974
Kabina ST	143	91	8189	7304
Quadris IF	140	101	7980	7534

Summary

 Varietal resistance made a big difference
 Newer seed treatments provided excellent early-season control of *Rhizoctonia* Postemergence fungicide application did not provide a benefit due to lack of lateseason disease pressure

One final thought

Good disease control is a good disease control practice

UNIVERSITY OF MINNESOTA Driven to Discover™

Acknowledgements

- Sugarbeet Research and Education Board of Minnesota and North Dakota
- Scott Pahl, Germains Seed Technology
- Sumitomo Corporation of America
- Syngenta
- Valent
- American Crystal Sugar Company quality lab
- Jeff Nielsen and Hal Mickelson
- Constantin Adelakoun, Tim Cymbaluk, Katie Sheetz, and Irwin Sylvah

University of Minnesota Driven to Discover™