# Control of Rhizoctonia from Planting to Harvest

Carol E. Windels & Jason R. Brantner University of Minnesota Northwest Research & Outreach Center, Crookston, MN

### Today's topics

About *Rhizoctonia*Fungicides

Experiments, experiences, & other factors

Plant resistance
Crop susceptibility to *Rhizoctonia*Tillage
Others disease management options

# About Rhizoctonia

# *Rhizoctonia solani* AG 2-2 Seed rot, damping-off of seedlings



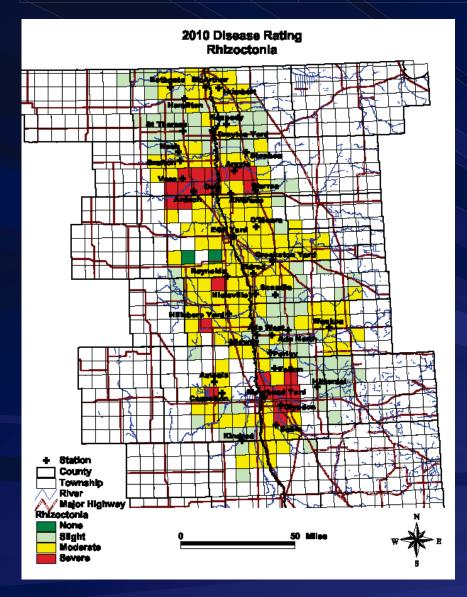




# About Rhizoctonia

Rhizoctonia solani AG 2-2
 Seed rot, damping-off of seedlings
 Rhizoctonia crown and root rot








# About Rhizoctonia

AG 2-2 has intraspecific groups (ISGs) AG 2-2 IV and AG 2-2 IIIB Cause Rhizoctonia crown & root rot Both occur in MN/ND RRV: AG 2-2 IV most common (66%) So. MN: AG 2-2 IIIB most common (56%) Both ISG's cause same symptoms on sugarbeet

### Rhizoctonia: 2010 Disease Rating (ACSC)



| Rating   | Yield<br>Loss % | %<br>Acres |
|----------|-----------------|------------|
| None     | 0               | 2          |
| Slight   | 0-5             | 32         |
| Moderate | 5-15            | 57         |
| Severe   | 15-30           | 10         |
|          | (Abandonment)   |            |

Source: ASCS

#### Factors affecting Rhizoctonia diseases

Density of fungus in soil

- High populations: disease begins early in season even if weather not ideal
- Low populations: onset of disease is later in season, esp. if weather ideal
- Susceptibility of variety
  - Environment

- Temperature: 50 to 95<sup>+</sup> <sup>0</sup>F (68 to 85 <sup>0</sup>F)
- Soil moisture: dry to wet @ 25 100% MHC

**Fungicides: Seed treatment** Current fungicides: fair to good control Thiram, Maxim (combined with Apron or Allegiance) Dynasty (Syngenta) Registered for sugarbeet – azoxystrobin 2011: Test in region @ many sites 2012: Available to seed companies Cruiser + Apron XL + Maxim + Dynasty (minipellet) Other fungicides in pipeline: Sedaxene (pyrazole)

#### 2010 Field trial fungicides: In-furrow

Plots inoculated with *R. solani* AG 2-2 IIIB on whole barley (31 lb/acre)

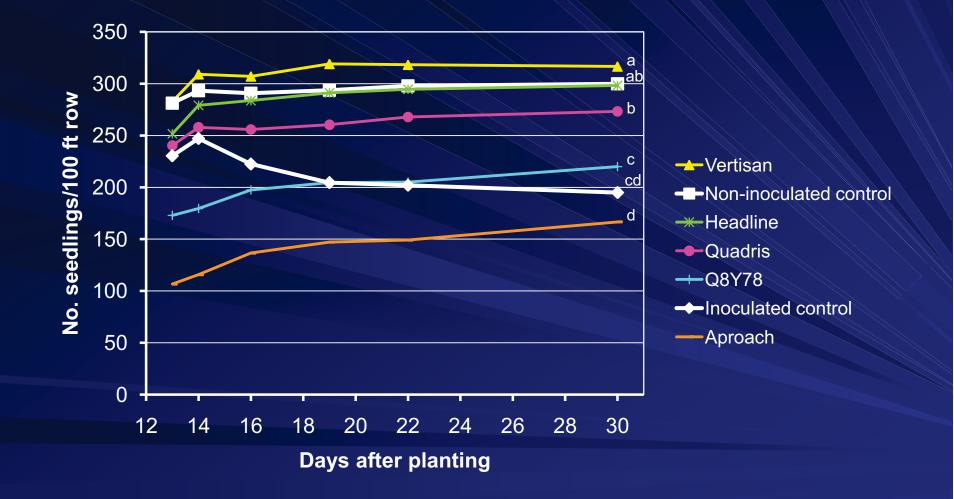
- Broadcast and worked into top 4 inches of soil
- Randomized complete block 4 reps
- Two controls
  - Non-inoculated, no fungicide
  - Inoculated, no fungicide

Fungicides applied in 4-inch band right behind disk opener (6 row plots)



In-furrow nozzle

Drip tube No starter fertilizer


### In-furrow fungicide trial

Plots inoculated with R. solani AG 2-2 IIIB on whole barley (31 lb/acre) Broadcast and worked into top 4 inches of soil Randomized complete block - 4 reps Fungicides applied in 4-inch band right behind. disk opener (6 row plots) Planted susceptible variety (rating = 5.8) May 19 at 2.4-inch spacing Thinned June 23 Stand, root rot ratings, yield and quality data

# In-furrow fungicides

|                  |                       | Product           | rate       |
|------------------|-----------------------|-------------------|------------|
| Fungicide        | Active ingredient     | fl oz/1000 ft row | fl oz/acre |
| Aproach          | Picoxystrobin         | 1.3               | 31         |
| Headline         | Pyraclostrobin        | 0.5               | 12         |
| Q8Y78 (Aproach + | 2:1 premix of penthio | 1.6               | 38         |
| Vertisan)        | + picoxystrobin       |                   |            |
| Quadris          | Azoxystrobin          | 0.6               | 14.3       |
| Vertisan         | Penthiopyrad          | 1.6               | 38         |

#### In-furrow trial stand establishment

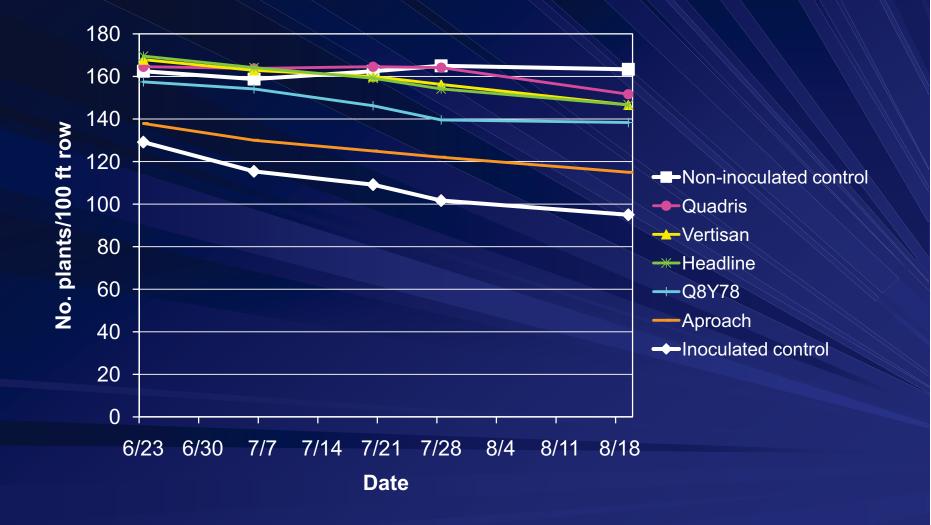


### **Non-inoculated Control**



### **Inoculated Control**




### Vertisan in-furrow



### Aproach in-furrow



#### In-furrow trial post-thinning stand data



### In-furrow trial yield data

|                       | Rating | Yield | Sucrose      |
|-----------------------|--------|-------|--------------|
| Treatment             | (0-7)  | (T/A) | (lb recov/A) |
| Non-inoculated        | 1.8    | 27.2  | 8635         |
| R. solani-inoculated: |        |       |              |
| No fungicide          | 3.8    | 17.7  | 5540         |

| LSD ( <i>P</i> = 0.05) | 0.77 | 4.4 | 1395 |
|------------------------|------|-----|------|
|------------------------|------|-----|------|

### In-furrow trial yield data

|                        | Rating | Yield | Sucrose      |
|------------------------|--------|-------|--------------|
| Treatment              | (0-7)  | (T/A) | (lb recov/A) |
| Non-inoculated         | 1.8    | 27.2  | 8635         |
| R. solani-inoculated:  |        |       |              |
| No fungicide           | 3.8    | 17.7  | 5540         |
| Quadris                | 2.2    | 23.9  | 7614         |
| Headline               | 2.3    | 24.3  | 7599         |
| Vertisan               | 3.0    | 22.7  | 7043         |
| Q8Y78                  | 2.7    | 21.3  | 6769         |
| Aproach                | 2.6    | 20.1  | 6318         |
|                        |        |       |              |
| LSD ( <i>P</i> = 0.05) | 0.77   | 4.4   | 1395         |

### **Conclusions: In-furrow trial**

Headline, Quadris, and Vertisan resulted in good emergence compared to Aproach and Q8Y78, which were phytotoxic

Quadris protected stands for 10 weeks


Headline and Vertisan protected stands for about for about 4-5 weeks

Quadris and Headline under high disease pressure resulted in yields comparable to non-inoculated control

#### When is an in-furrow fungicide needed?

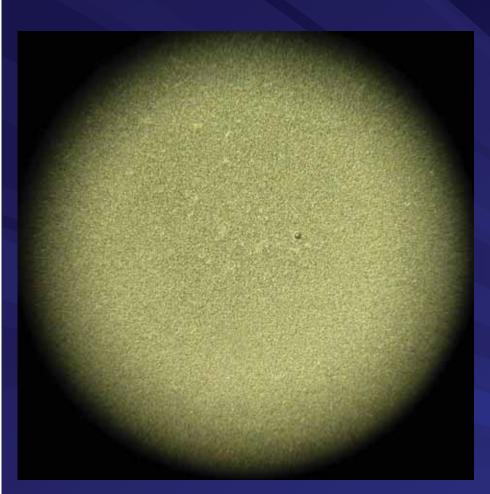
History of early-season Rhizoctonia diseases
Post-emergence seedling stand loss, root rot
History of severe Rhizoctonia crown and root rot
And if beans grown the previous season
Severe infestation (10% acres):

In-furrow fungicide
In-furrow + post-emergence application (MI)



Source: Steve Poindexter Michigan State Extension: Saginaw

In-Furrow Applications of Quadris (Michigan, ACSC, U of M, NDSU, USDA, BASF, Syngenta, WC Chem) Quadris: phytotoxicity issues: In-furrow Quadris dribbled on seed in-furrow can reduce emergence Reduce phytotoxicity: Quadris more effective applied as a T-band than dribbled in-furrow (3.5- to 4-inch vs. 7-inch) Monitor spray nozzles for continuous flow


#### In-Furrow Applications of Quadris (Michigan, ACSC, U of M, NDSU, USDA, BASF, Syngenta, WC Chem)

Quadris + liquid fertilizers: Phytotoxicity and incompatibility issues

Reduce phtyotoxicity: Apply T-band

Quadris does not mix well directly with in-furrow liquid fertilizers

*Improve compatibility:* Quadris premixed with ½ to 1 gal water for each gal of starter, then add to liquid fertilizer





Quadris premixed with water, then added to 10-34-0 Quadris mixed directly with 10-34-0

#### In-Furrow Applications of Quadris (Michigan, ACSC, U of M, NDSU, USDA, BASF, Syngenta, WC Chem)

- Constant agitation required to avoid separation and precipitation
- Best to apply within 4 hours
- Do not let sit overnight without very thorough agitation before application



18 hours later: Quadris premixed in water before adding to starter fertilizer

#### In-Furrow Applications of Headline

(Michigan, ACSC, U of M, NDSU, USDA, BASF, Syngenta, WCChem)

- Do not discontinue starter fertilizer
- Headline causes less risk of phytotoxicity than Quadris
- BASF recommends mixing Headline with at least 1 gal water before adding to liquid fertilizer
  - Addition of compatibility agents does not improve stability of Headline + liquid fertilizer solutions
- Agitation eliminates layering of Headline on top of liquid fertilizer



Headline premixed with water before adding to starter fertilizer Headline added directly to starter fertilizer premixed with water In-Furrow Applications of Headline (Michigan, ACSC, U of M, NDSU, USDA, BASF, Syngenta, WC Chem)

Best to apply with constant agitation within 4 hours after mixing

Avoid solutions settling overnight – requires very thorough agitation before application

Compatibility & nozzle plugging also affected by:

Temperature of water, starter fertilizer, air

Nozzle/orifice size, sprayer screen size



#### Source: Tyler Grove, ACSC

#### In-Furrow Applications of Fungicides (Michigan, ACSC, U of M, NDSU, USDA, BASF, Syngenta, WC Chem)

To avoid compatibility problems, use injection system equipment to inject fungicide into starter fertilizer solution

Plugging should stop – but does not guarantee no phytotoxicity

#### 2010 Field trial fungicides: Banded

Susceptible variety (rating = 5.8)
Fungicides applied and June 24

7-inch band @ 6- to 8-leaf stage
4-inch soil temperature max = 75 °F
Randomized complete block - 4 reps

Plots inoculated (uniform disease) within 4 hr
Cultivated immediately after inoculation
Root rot ratings, yield and quality data

### Fungicide application on 6-leaf beets





## **Band-applied fungicides**

|                  |                       | Product           | rate       |
|------------------|-----------------------|-------------------|------------|
| Fungicide        | Active ingredient     | fl oz/1000 ft row | fl oz/acre |
| Aproach          | Picoxystrobin         | 1.3               | 31         |
| Headline*        | Pyraclostrobin        | 0.5               | 12         |
| Proline*         | Prothioconazole       | 0.24              | 5.7        |
| Q8Y78 (Aproach + | 2:1 premix of penthio | 1.6               | 38         |
| Vertisan)        | + picoxystrobin       |                   |            |
| Quadris          | Azoxystrobin          | 0.6               | 14.3       |
| Vertisan         | Penthiopyrad          | 1.6               | 38         |

\* + induce @ 0.125%

## Band trial yield data

|                       | Rating | Yield | Sucrose      |
|-----------------------|--------|-------|--------------|
| Treatment             | (0-7)  | (T/A) | (lb recov/A) |
| Non-inoculated        | 2.8    | 23.8  | 7537         |
| R. solani-inoculated: |        |       |              |
| No fungicide          | 5.7    | 9.5   | 2780         |



1.1

5.<u>3</u>

1693

## Band trial yield data

|                        | Rating | Yield | Sucrose      |
|------------------------|--------|-------|--------------|
| Treatment              | (0-7)  | (T/A) | (lb recov/A) |
| Non-inoculated         | 2.8    | 23.8  | 7537         |
| R. solani-inoculated:  |        |       |              |
| No fungicide           | 5.7    | 9.5   | 2780         |
| Aproach                | 2.0    | 25.5  | 8429         |
| Quadris                | 1.5    | 24.5  | 8295         |
| Vertisan               | 2.1    | 25.3  | 8196         |
| Proline                | 1.6    | 24.7  | 8064         |
| Q8Y78                  | 2.0    | 24.0  | 7863         |
| Headline               | 2.6    | 23.7  | 7228         |
|                        |        |       |              |
| LSD ( <i>P</i> = 0.05) | 1.1    | 5.3   | 1693         |

## Summary

 All six band-applied fungicides were effective against Rhizoctonia crown and root rot initiated at the crown (applied before infections occurred)
 Quadris and Proline most effective in reducing RCRR

2010 Fungicide field trial: Quadris application method/rate (ACSC-Sponsored) Susceptible variety (rating = 5.8) Inoculated site Fungicides applied and plots inoculated June 16 6-leaf stage; 4-inch soil temperature max = 72 °F Cultivated immediately after inoculation Non-inoculated site Fungicides applied June 7 4-leaf stage; 4-inch soil temperature max = 60 °F Root rot ratings, yield and quality data

#### Quadris treatments

Application methods
5-inch band
7-inch band
Broadcast
Application rates (fl oz product/acre)
5.0, 7.5, 10.0, 14.5
Non-inoculated control (no fungicide)

#### Non-inoculated trial Fungicide application on 4-leaf beets



## Non-inoculated trial: Quadris trial yield data

|                        | Rating | Yield | Sucrose      |
|------------------------|--------|-------|--------------|
| Treatment              | (0-7)  | (T/A) | (lb recov/A) |
| Control (no fungicide) | 2.4    | 24.0  | 8270         |
| Application method     |        |       |              |
| 5-inch band            | 2.1    | 25.3  | 8379         |
| 7-inch band            | 1.8    | 26.6  | 8903         |
| Broadcast              | 1.5    | 27.7  | 9181         |
| Broadcast vs. band     | **     | *     | NS           |
| 5-inch vs. 7-inch band | NS     | NS    | NS           |
| Application rate       |        |       |              |
| 5.0 fl oz product/A    |        |       |              |
| 7.5 fl oz product/A    |        |       |              |
| 10.0 fl oz product/A   |        |       |              |
| 14.5 fl oz product/A   |        |       |              |
| Rate linear            |        |       |              |
| Rate quadratic         |        |       |              |
|                        |        |       |              |

Method x rate interaction

## Non-inoculated trial: Quadris trial yield data

|                           | Rating | Yield | Sucrose      |
|---------------------------|--------|-------|--------------|
| Treatment                 | (0-7)  | (T/A) | (lb recov/A) |
| Control (no fungicide)    | 2.4    | 24.0  | 8270         |
| Application method        |        |       |              |
| 5-inch band               | 2.1    | 25.3  | 8379         |
| 7-inch band               | 1.8    | 26.6  | 8903         |
| Broadcast                 | 1.5    | 27.7  | 9181         |
| Broadcast vs. band        | **     |       | NS           |
| 5-inch vs. 7-inch band    | NS     | NS    | NS           |
| Application rate          |        |       |              |
| 5.0 fl oz product/A       | 1.8    | 25.5  | 8413         |
| 7.5 fl oz product/A       | 1.8    | 25.9  | 8587         |
| 10.0 fl oz product/A      | 1.8    | 27.0  | 9062         |
| 14.5 fl oz product/A      | 1.7    | 27.6  | 9223         |
| Rate linear               | NS     | NS    | NS           |
| Rate quadratic            | NS     | NS    | NS           |
| Method x rate interaction | NS     | NS    | NS           |

#### Non-inoculated trial: Quadris trial revenue data

|                        | Revenue | Product cost | Benefit over no fung. |
|------------------------|---------|--------------|-----------------------|
| Treatment              | (\$/A)  | (\$/A)       | (\$/A)                |
| Control (no fungicide) | 1401    | -            |                       |
| Application rate       |         |              |                       |
| 5.0 fl oz product/A    | 1368    | 12.50        | -46                   |
| 7.5 fl oz product/A    | 1403    | 18.75        | -17                   |
| 10.0 fl oz product/A   | 1496    | 25.00        | 70                    |
| 14.5 fl oz product/A   | 1520    | 36.25        | 83                    |

#### Inoculated Trial: Quadris revenue data

|                      |        | Revenue | Product cost | Benefit over no fung. |
|----------------------|--------|---------|--------------|-----------------------|
| Treatment            |        | (\$/A)  | (\$/A)       | (\$/A)                |
| Non-inoculated cor   | ntrol  | 1614    |              |                       |
| Inoculated, no fung  | gicide | 124     | -            |                       |
| Application rate     |        |         |              |                       |
| 5.0 fl oz product/A  | Ą      | 1605    | 12.50        | 1469                  |
| 7.5 fl oz product/A  | A      | 1677    | 18.75        | 1534                  |
| 10.0 fl oz product/A | A      | 1706    | 25.00        | 1557                  |
| 14.5 fl oz product/A | A      | 1712    | 36.25        | 1552                  |

#### Conclusions

Low Rhizoctonia disease pressure Based on one year's data, trial will be repeated in 2011

There was a trend for higher yields and recoverable sucrose with increasing rates of Quadris

Economic benefits occurred with highest rates of Quadris (10 and 14.5 fl oz/A)

#### POST-planting Applications of Quadris (Michigan, ACSC, U of M, NDSU, USDA, BASF, Syngenta, WC Chem)

- Application preemergence over the row is not very effective
- Application in cotyledon stage less effective than at later leaf stages
- Wait until at least 2- to 4-leaf stage
- Best to wait until 4- to 6-leaf stage, if possible
- Benefits occur if applied 21 days before infection

#### POST-planting Applications of Quadris (Michigan, ACSC, U of M, NDSU, USDA, BASF, Syngenta, WC Chem)

Quadris + Mustang Max causes significant nozzle plugging if not applied immediately after mixing

Quadris + liquid Lorsban is a problem because of phytotoxicity to seedlings

Quadris + any EC formulation is risky and may cause significant crop injury

Avoid mixing Quadris with surfactants

Conduct jar tests for compatibility before mixing in tank

#### POST-planting Applications of Quadris (Michigan, ACSC, U of M, NDSU, USDA, BASF, Syngenta, WC Chem)

Quadris should <u>never</u> be mixed with microrate herbicides

Apply Quadris as near to the exact mid-point between two successive microrate applications as possible

Quadris can be mixed with POST-glyphosate applications, but Monsanto does NOT recommend this practice or stand behind weed control efficacy

## **Experiences of ACSC AG Staff**

In 2010, ACSC growers applied Quadris (postemergence) on ~ 50,000 acres

Quadris performed well for 75-80% of fields

What happened to the other 20-25%?

- No negative or positive effect
- Misdiagnosis of problem

### Root diseases are confusing to diagnose



#### Rhizoctonia

Aphanomyces

# What disease(s) is this???



# **Experiences of ACSC AG Staff**

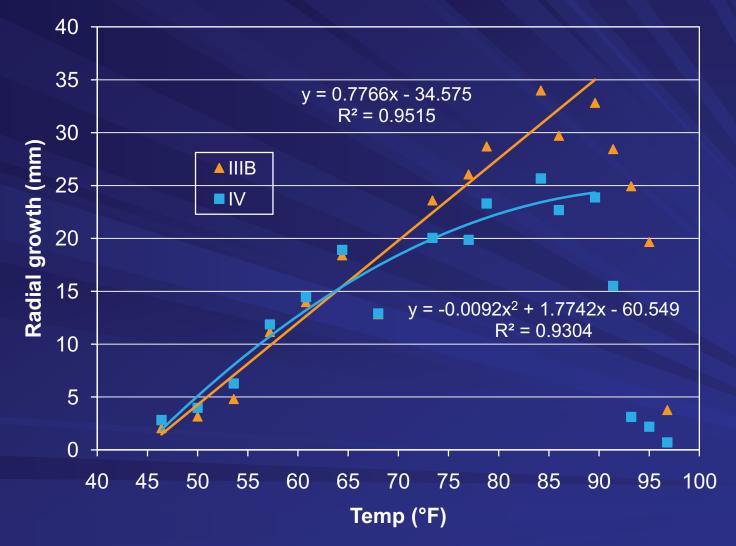
In 2010, ACSC growers applied Quadris (postemergence) on ~ 50,000 acres
Quadris performed well for 75-80% of fields
What happened to the other 20-25%?
No negative or positive effect
Misdiagnosis of problem
Infections occurred on root (not crown)

# Quadris applied at 6-leaf stage



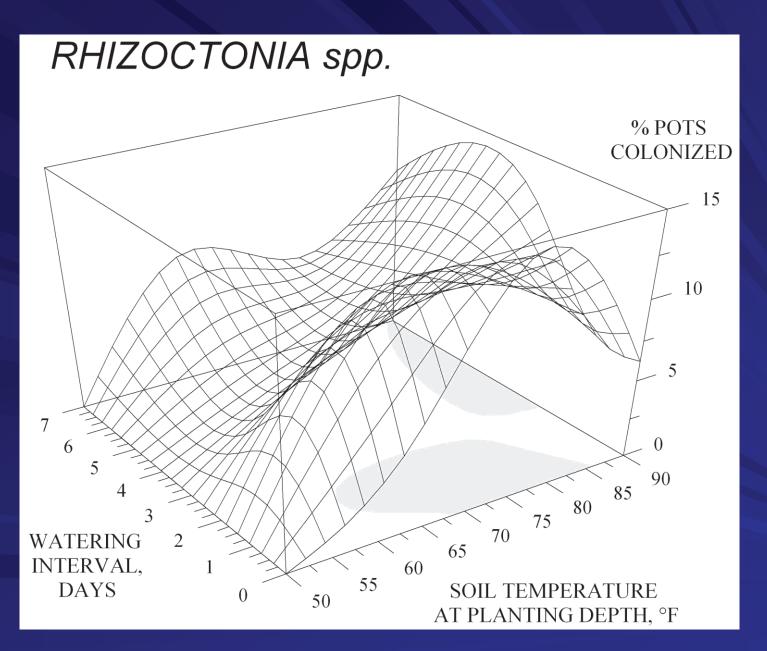
# **Experiences of ACSC AG Staff**

In 2010, ACSC growers applied Quadris (postemergence) on  $\sim$  50,000 acres Quadris performed well for 75-80% of fields What happened to the other 20-25%? No negative or positive effect Misdiagnosis of problem Infections occurred on root (not crown) Applied after crowns/roots infected & no symptoms Time between infection & symptoms can be 1-3 weeks


# **Experiences of ACSC AG Staff**

In 2010, ACSC growers applied Quadris (postemergence) on  $\sim$  50,000 acres Quadris performed well for 75-80% of fields What happened to the other 20-25%? No negative or positive effect Misdiagnosis of problem Infections occurred on root (not crown) Applied after crowns/roots infected & no symptoms Applied too late (after symptoms develop) to "catch up"

## **Fungicide Timing?**


 Fungicides effective when applied <u>before</u> *Rhizoctonia* infects sugarbeet
 Still under investigation
 Growing Degree Days
 Soil temperature (60-65 °F)

#### Temperature Effect on Growth of *Rhizoctonia solani* AG 2-2 IV and AG 2-2 IIIB

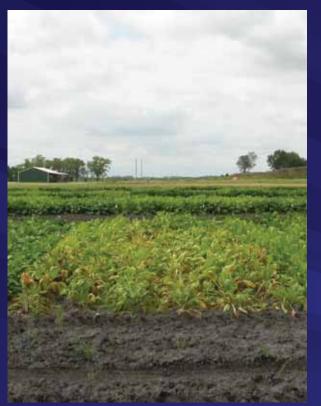


# **Fungicide Timing?**

Fungicides effective when applied before Rhizoctonia infects sugarbeet Still under investigation Growing Degree Days Soil temperature (60-65 °F) Soil moisture: dry to wet Soil temperature & moisture interaction



Source: Paul Meyer & Jim Kurle, Dept. Plant Pathology, University of Minnesota, St. Paul


## **Fungicide Timing?**

Still under investigation
Growing Degree Days
Soil temperature (60-65 °F)
Soil moisture (dry to wet)
Soil temperature & moisture
Plant growth stage (4- to 8-leaf)
In general, most fields do not have Rhizoctonia pressure to justify cost of >1 application

### **Plant resistance**

Severe disease severity: Select varieties with disease rating <3.82</p> Slight to Moderate disease severity: Select varieties with disease rating < 5.0</p> Lower Rhizoctonia ratings means improved partial resistance/tolerance Does not mean immunity Resistance not fully expressed until 6-8 leaf stage

#### Give your fungicides a better chance







Susceptible (5.76) RCRR: 5.4 RSA: 4382 Moderate (4.14) 4.4 6606 Resistant (2.35) 3.5 7201

#### Sugarbeet variety & Fungicides

Slight Rhizoctonia pressure
 Partially Resistant variety – no fungicide
 Susceptible variety – apply fungicide
 Moderate Rhizoctonia pressure
 Partially Resistant variety + fungicide
 Severe Rhizoctonia pressure
 Partially Resistant variety + fungicide (2)

## Crop Susceptibility to Rhizoctonia

*R. solani* AG 2-2 IV vs. AG 2-2 IIIB
Differ in host range?
Differ in aggressiveness?
Effect on rotation crops

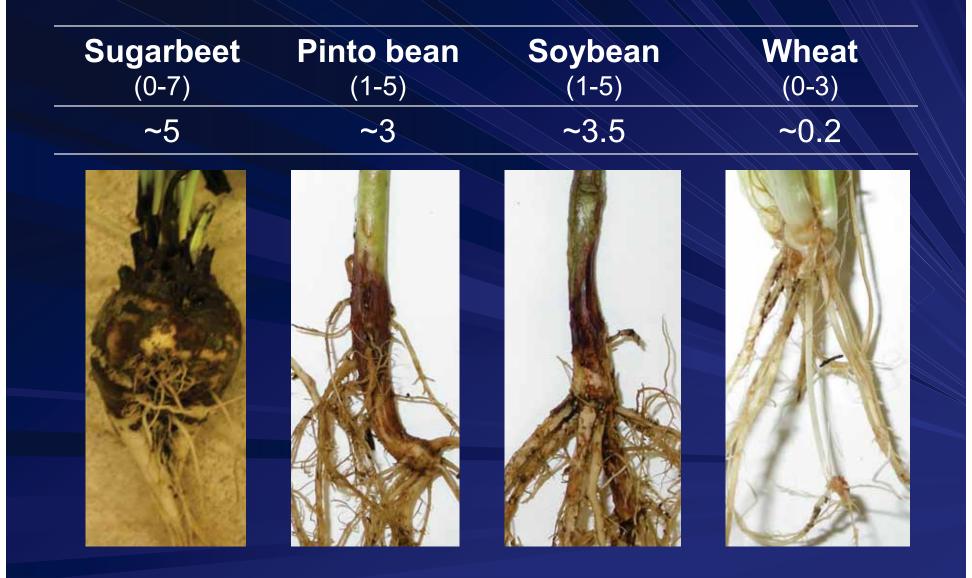
| Crop                      | Avg. disease ratings (min – max) |                    |                    |
|---------------------------|----------------------------------|--------------------|--------------------|
| Crop -<br>(Disease scale) | Control                          | AG 2-2 IV          | AG 2-2 IIIB        |
| Sugarbeet (0-7 scale)     | 0.3                              | 5.0 a<br>(3.3-5.6) | 4.9 a<br>(3.8-5.9) |
| Pinto bean (1-5 scale)    |                                  |                    |                    |
| Soybean (1-5 scale)       |                                  |                    |                    |
| Wheat (0-3 scale)         |                                  |                    |                    |
| Corn (1-5 scale)          |                                  |                    |                    |

| Crop                    | Avg. d  | . disease ratings (min – max) |                    |  |
|-------------------------|---------|-------------------------------|--------------------|--|
| Crop<br>(Disease scale) | Control | AG 2-2 IV                     | AG 2-2 IIIB        |  |
| Sugarbeet (0-7 scale)   | 0.3     | 5.0 a<br>(3.3-5.6)            | 4.9 a<br>(3.8-5.9) |  |
| Pinto bean (1-5 scale)  | 1.0     | 2.9 a<br>(2.5-3.4)            | 3.1 b<br>(2.3-3.8) |  |

Soybean (1-5 scale)

Wheat (0-3 scale)

Corn (1-5 scale)


| Crop                                    | Avg. d  | Avg. disease ratings (min – max) |                    |  |
|-----------------------------------------|---------|----------------------------------|--------------------|--|
| Crop<br>(Disease scale)                 | Control | AG 2-2 IV                        | AG 2-2 IIIB        |  |
| Sugarbeet (0-7 scale)                   | 0.3     | 5.0 a<br>(3.3-5.6)               | 4.9 a<br>(3.8-5.9) |  |
| Pinto bean (1-5 scale)                  | 1.0     | 2.9 a<br>(2.5-3.4)               | 3.1 b<br>(2.3-3.8) |  |
| Soybean (1-5 scale)                     | 1.0     | 3.5 a<br>(3.0-4.3)               | 3.5 a<br>(2.3-4.1) |  |
| $\lambda / \mu = a t (0, 0, a a a b a)$ |         |                                  |                    |  |

Wheat (0-3 scale)

Corn (1-5 scale)

| Crop                    | Avg. disease ratings (min – max) |                    |                    |
|-------------------------|----------------------------------|--------------------|--------------------|
| Crop<br>(Disease scale) | Control                          | AG 2-2 IV          | AG 2-2 IIIB        |
| Sugarbeet (0-7 scale)   | 0.3                              | 5.0 a<br>(3.3-5.6) | 4.9 a<br>(3.8-5.9) |
| Pinto bean (1-5 scale)  | 1.0                              | 2.9 a<br>(2.5-3.4) | 3.1 b<br>(2.3-3.8) |
| Soybean (1-5 scale)     | 1.0                              | 3.5 a<br>(3.0-4.3) | 3.5 a<br>(2.3-4.1) |
| Wheat (0-3 scale)       | 0.0                              | 0.1 a<br>(0.0-0.7) | 0.3 b<br>(0.1-0.7) |
| Corn (1-5 scale)        | -                                | _                  | _                  |

# **Average Disease Rating**



#### Conclusions

Planting back-to-back crops susceptible to *R. solani* AG 2-2 is ill-advised and should be avoided

Use long crop rotations

Consider two small grain crops between and/or before sugarbeet

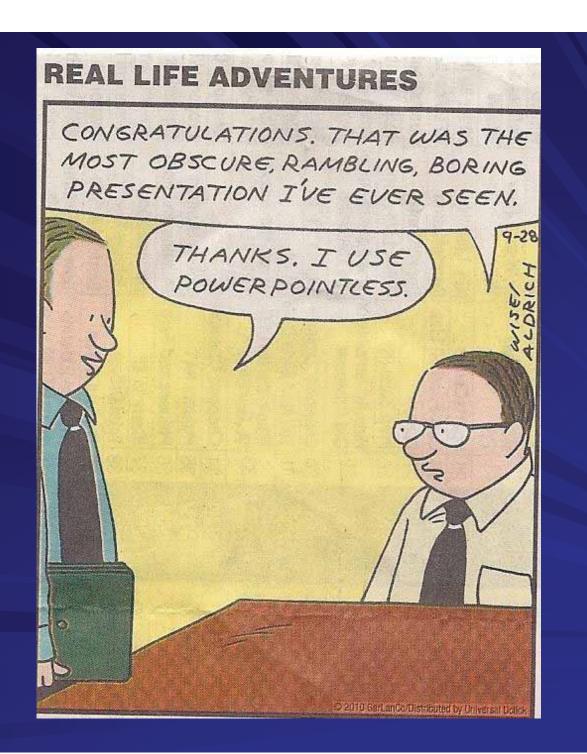
Plant Rhizoctonia resistant/tolerant soybean and bean crops, if available

## Tillage and Rhizoctonia

Rhizoctonia survives in residue of infected plants/debris Tillage that hastens decomposition residue 2011 Trial (U of M and NSDU) No-till Strip tillage Conventional tillage Moldboard Plow Deep-ripping

#### More Rhizoctonia Control Options

Plant early


Avoid throwing soil in crowns during cultivation

Control weeds

Control <u>soybean</u> cyst nematode

Control soil insects

Use good field drainage practices

