Update on Root Rot Research: Aphanomyces and Rhizoctonia

Carol E. Windels & Jason R. Brantner University of Minnesota NW Res. & Outreach Ctr., Crookston

2011 Sugarbeet samples (183 total)

Outline of topics

Compare: Aphanomyces vs. Rhizoctonia
 Infection: Aphanomyces vs. Rhizoctonia
 Aphanomyces

 Disease management options
 Long-term lime trials

 Rhizoctonia solani AG 2-2

 Fungicides (seed, in-furrow, post-emergence)

Aphanomyces vs Rhizoctonia

Species:	A. cochloiodes	R. solani AG 2-2
Pathogen:	Oomycete, "water mold"	True fungus
Host range:	Sugarbeet Some weeds	Sugarbeet, beans, sunflowers, corn; Numerous weeds
Temperature:	55-95° F (68-86° F)	50-95° F (68-86°F)
Moisture:	Wet	Dry – wet (25-100% MHC)
Seedling:	Lab analysis	Lab analysis
Older roots:	Root tip, lateral roots	Crown to tip, usually

Aphanomyces

Rhizoctonia

Aphanomyces vs Rhizoctonia

Species:	A. cochloiodes	R. solani AG 2-2
Pathogen:	Oomycete, "water mold"	True fungus
Host range:	Sugarbeet Some weeds	Sugarbeet, beans, sunflowers, corn, numerous weeds
Temperature:	55-95° F (68-86° F)	50-95° F (68-86°F)
Moisture:	Wet	Dry – wet (25-100% MHC)
Seedling:	Lab analysis	Lab analysis
Older roots:	Root tip, lateral roots	Crown to tip, usually
Movement:	Moving soil & plant parts	Moving soil & plant part

Aphanomyces vs Rhizoctonia

Species:	A. cochloiodes	R. solani AG 2-2
Pathogen:	Oomycete, "water mold"	True fungus
Host range:	Sugarbeet Some weeds	Sugarbeet, beans, sunflowers, corn, numerous weeds
Temperature:	55-95° F (68-86° F)	50-95° F (68-86°F)
Moisture:	Wet	Dry – wet (25-100% MHC)
Seedling:	Lab analysis	Lab analysis
Older roots:	Root tip, lateral roots	Crown to tip, usually
Movement:	Moving soil & plant parts	Moving soil & plant part
Survives:	Oospores	Mycelium, hyphae
Infection:	Zoospores	Mycelium, hyphae

Oospores in diseased root

Zoospores at end of sporangia

Aphanomyces life cycle

Rhizoctonia life cycle (adapted from Agrios, 2005)

Control of Aphanomyces

Avoid planting severely infested fields
Plant early
Plant Tachigaren-treated seed (45g)
Select partially resistant variety
Cultivate to keep soil dry & aerated
Apply factory "spent" lime

Eighth Growing Season After a Single Field Application of Spent Lime: Aphanomyces & Sugarbeet Yields

> Carol E. Windels, Jason R. Brantner, Albert Sims and *Carl Bradley Univ. Minn., NW Res. Outreach Ctr., Crookston & *Univ. Illinois, Urbana

Research site information

Factor	Hillsboro, ND
Soil type	Fargo sicl
	(fine, smectitic, frigid,
	Typic Epiaquert)
Aph Soil Index Value	48
Soil pH	7.0
Date limed	October, 2003
Rates (Ton wet wt/A)	0, 5, 10, 20, 30
Rates (Ton dry wt/A)	0, 3.3, 6.5, 13, 19.5

Research site information

Factor	Hillsboro, ND	Breckenridge, MN
Soil type	Fargo sicl	Doran cl
	(fine, smectitic, frigid,	(fine, smectitic, frigid
	Typic Epiaquert)	Aquertic, arqiudoll)
Aph Soil Index Value	48	98
Soil pH	7.0	6.3
Date limed	October, 2003	April, 2004
Rates (Ton wet wt/A)	0, 5, 10, 20, 30	0, 5, 10, 15, 20
Rates (Ton dry wt/A)	0, 3.3, 6.5, 13, 19.5	0, 2.7, 5.3, 8, 10.6

Experiments (2005 – 2012)

Sugarbeet sown in 1 experiment/year Rotation crops sown 3 experiments/year

Objectives: Long-term

Amount of spent lime needed to reduce Aphanomyces root rot on sugarbeet & improve sugarbeet yield & quality

Duration of disease suppression

Effects on other crops in rotation

Mechanisms of disease suppression

Materials & Methods

Sown May 6 – 7, 2011 (4-inch seed, 22-inch row) - Variety 1: Susceptible (Aph = 6.92) - Variety 2: MR (Aph = 4.14 + 45g Tachigaren) Soil samples collected (pH & SIV) Seedling stand counts 5-6 wk after pltg Harvested September 26, 2011 Rated for Aphanomyces root rot Sugarbeet yield and quality

Hillsboro 2005-2011

Limo	%	Change	e RSA co	ompare	d to no l	ime con	trol
(T/A)	2005	2005	2007	2008	2009	2010	2011
No Lime	4602	9893	5215	7595	6935	8435	
5	+18	+7.4	-4.2	+5.6	+18	+2.7	
10	+20	+6.6	+10.8	+23	+17.1	+5.0	

Hillsboro: Moderate Aph Disease in 2011

Lime rate	Stand (1	00 ft row)	
(T/A)	5 WAP	Harvest	
0	175	146	
5	175	151	
10	198	182	
20	191	171	
30	182	165	
Linear ^z	NS	NS	

^y Aph root rot rating= 0-7 scale, 0= healthy, 7 = root completely rotted and foliage dead ^z Significant at P=0.05, ** = Significant at P=0.01, NS = Not significant

Hillsboro: Moderate Aph Disease in 2011

Lime rate	Stand (1	00 ft row)	Aph	
(T/A)	5 WAP	Harvest	RRR ^y	
0	175	146	3.4	
5	175	151	2.9	
10	198	182	2.3	
20	191	171	2.6	
30	182	165	2.6	
Linear ^z	NS	NS	*	

^y Aph root rot rating= 0-7 scale, 0= healthy, 7 = root completely rotted and foliage dead ^z Significant at P=0.05, ** = Significant at P=0.01, NS = Not significant

Hillsboro: Moderate Aph Disease 2011

Lime rate	Stand (1)	00 ft row)	Aph	Yield	Lb Rec	Gross revenue
(T/A)	5 WAP	Harvest	RRR ^y	(T/A)	sucrose/A	(\$/A)
0	175	146	3.4	15.5	5167	903
5	175	151	2.9	18.1	6210	1116
10	198	182	2.3	18.0	6410	1191
20	191	171	2.6	17.5	6116	1118
30	182	165	2.6	19.8	6680	1180
Linear ^z	NS	NS	*	**	**	*

^yAph root rot rating= 0-7 scale, 0= healthy, 7 = root completely rotted and foliage dead ^z Significant at P=0.05, ** = Significant at P=0.01, NS = Not significant

Hillsboro Across Varieties

Breckenridge 2005-2011

Limo	%	Change	RSAc	ompare	d to no l	ime con	trol
(T/A)	2005	2005	2007	2008	2009	2010	2011
No Lime	1559	3911	2827	5546	3798	2675	
5	+65.7	+48.2	+41.8	+26.2	+8.4	+44.2	
10	+69.9	+55.8	+49.0	+24.3	+23.8	+56.5	

Breckenridge: Severe Aph Pressure in 2011

Lime rate	Stand (1	00 ft row)
(T/A)	6 WAP	Harvest
0	178	33
5	177	77
10	176	95
15	186	126
20	180	133
Linear ^z	NS	***
Quadratic ^z	NS	NS

^y Aph root rot rating= 0-7 scale, 0= healthy, 7 = root completely rotted and foliage dead

^Z Significant at P=0.05, ** = Significant at P=0.01, *** = Significant at P=0.001, NS = Not significant

Breckenridge: Severe Aph Pressure in 2011

Lime rate	Stand (1	00 ft row)	Aph
(T/A)	6 WAP	Harvest	RRR ^y
0	178	33	5.6
5	177	77	5.1
10	176	95	4.8
15	186	126	4.2
20	180	133	4.3
Linear ^z	NS	***	***
Quadratic ^z	NS	NS	*

^y Aph root rot rating= 0-7 scale, 0= healthy, 7 = root completely rotted and foliage dead

^Z Significant at P=0.05, ** = Significant at P=0.01, *** = Significant at P=0.001, NS = Not significant

Breckenridge: Severe Aph Pressure in 2011

Lime rate	Stand (1	00 ft row)	Aph	Yield	Lb Rec	Gross revenue
(T/A)	6 WAP	Harvest	RRR ^y	(T/A)	sucrose/A	(\$/A)
0	178	33	5.6	2.5	738	111
5	177	77	5.1	6.5	1966	311
10	176	95	4.8	7.8	2380	378
15	186	126	4.2	10.4	3258	537
20	180	133	4.3	10.9	3404	557
Linear ^z	NS	***	***	***	***	***
Quadratic ^z	NS	NS	*	NS	NS	NS

^y Aph root rot rating= 0-7 scale, 0= healthy, 7 = root completely rotted and foliage dead

^Z Significant at P=0.05, ** = Significant at P=0.01, *** = Significant at P=0.001, NS = Not significant

Breckenridge Across Varieties

What happened??

Soil Moisture

- Hillsboro: 11", late June mid August (103-147%)
- Breckenridge: 9.2", mid July to mid Aug(101-145% above normal)
- Aphanomyces SIV's
 - Hillsboro = 86; Breckenridge = 100
- Prolonged soil moisture, poor soil drainage, hi SIVs
- Breckenridge: "Pathogen dominate" situation
 - High populations, means early infections
 - Continuous infections & re-infections in wet soil
 - Severe root rot, stand loss, stunted roots
 - Soil dries up, roots too severely diseased & small

Summary & Conclusions

- 8TH GROWING SEASON SINCE LIME APPLIED:
- Soil pH: Increased with lime and remain relatively stable
- Aphanomyces soil index values: High at both locations
- Hillsboro (Moderate disease in 2011):
 - Significant reduction in root rot & increased yields with increasing lime rates
- Breckenridge (Severe, intense, prolonged disease 2011)

Significant reduction in root rot & increased yields with increasing lime rates, but yields not economic "Pathogen dominant" situation: BMP failed

> In a more typical year, management practices effective

About Rhizoctonia

- AG 2-2 has intraspecific groups (ISGs)
 - AG 2-2 IV and AG 2-2 IIIB
- Both occur in MN/ND
 - RRV: AG 2-2 IV most common (66%)
 - So. MN: AG 2-2 IIIB most common (56%)
- Both ISG's cause same symptoms on sugarbeet
- AG 2-2 IIIB tends to be more aggressive than AG 2-2 IV
 - Variability within AG 2-2 IIIB and AG 2-2 IV on rotation crops
- Most susceptible to least susceptible crops:
 - Seedlings: sugarbeet > beans > corn > sunflower
 - Adults: sugarbeet > beans > sunflower > corn
 - Nonhost = hard red spring wheat

Seed and In-furrow fungicides with and without postemergence Quadris for control of Rhizoctonia on sugarbeet

Control of Rhizoctonia crown and root rot with at-plant and postemergence fungicides

- Two sites: U of MN, NW Res Outreach Ctr, Crookston
- Randomized block design 4 reps
- Site one: inoculated late summer 2010
 - Spread *R. solani* AG 2-2-infested barley
 - Planted soybean
 - Resulted in early disease pressure in 2011
- Site two: inoculated prior to planting
 - Spread *R. solani* AG 2-2-infested barley
 - Planted trial
 - Resulted in low and late disease pressure

At-plant treatments

	Seed treatment rate	In-furrow rate
Treatment	(g a.i. / unit)	(fl. oz. product/A)
Control	-	-
Dynasty	0.25	-
Penthiopyrad	14	-
Sedaxane	0.05	-
Stamina	30	-
Headline	_	12
Quadris	-	14.3
Vertisan		38

All of above treatments alone and with postemergence Quadris application

In-furrow nozzle

Drip tube No starter fertilizer

Things to remember

Site 1 = very high disease pressure early

Site 2 = low disease pressure beginning later

Both sites: no at-plant x postemergence interaction so main effects shown

Site 1: stand establishment for at-plant trmt

No fungicide at planting, No Quadris post-emergence

Penthiopyrad-treated seed, No Quadris post-emergence

Quadris in-furrow, No Quadris post-emergence

Vertisan in-furrow, No Quadris post-emergence

Site 1: stand establishment for postemergence trmt

Site 1: At-plant treatment harvest results

Treatment	RCRR (0-7)	Yield (T/A)	% Sugar	lb recov./A
Control	4.9 ab	16.8 bc	16.7 c	5081 bc
Dynasty	5.5 a	13.4 c	17.1 bc	4196 c
Penthiopyrad	3.8 cd	23.0 a	17.3 bc	7317 a
Sedaxane	5.1 ab	16.7 bc	16.7 c	5094 bc
Stamina	4.5 bc	19.9 ab	17.2 bc	6207 ab
Headline I-F	3.6 d	22.1 a	17.6 ab	7108 a
Quadris I-F	2.7 e	21.5 ab	17.6 ab	6926 a
Vertisan I-F	2.8 e	23.6 a	18.2 a	7942 a
ANOVA p-value	<0.0001	0.007	0.010	0.005
LSD (P = 0.05)	0.8	5.1	0.75	1785

Site 1: Quadris postemergence results

Treatment	RCRR (0-7)	Yield (T/A)	% Sugar	lb recov./A
No Quadris	4.1	19.6	17.2	6167
Quadris	4.1	19.7	17.4	6301
ANOVA p-value	1.0	0.903	0.299	0.774

Postemergence Quadris application too late = not effective

Things to remember

Site 1 = very high disease pressure early

Site 2 = low disease pressure beginning later

Both sites: no at-plant x postemergence interaction so main effects shown

Site 2: stand establishment for at-plant trmt

Site 2: stand establishment for postemergence trmt

Site 2: At-plant treatment harvest results

Treatment	RCRR (0-7)	Yield (T/A) % Sugar		lb recov./A
Control	3.0 a	22.8 abc	16.7	6818 b
Dynasty	3.2 a	22.0 c	16.9	6660 b
Penthiopyrad	3.0 a	23.3 abc	17.3	7253 ab
Sedaxane	3.4 a	22.6 bc	17.1	6950 b
Stamina	3.0 a	21.1 c	17.7	6718 b
Headline I-F	2.2 b	24.9 ab	17.3	7746 a
Quadris I-F	1.5 b	25.2 a	17.3	7824 a
Vertisan I-F	2.0 b	24.6 ab	17.3	7718 a
ANOVA p-value	0.0001	0.026	0.318	0.008
LSD ($P = 0.05$)	0.7	2.5	NS	742

Site 2: Quadris postemergence results

Treatment	RCRR (0-7)	Yield (T/A)	% Sugar	lb recov./A
No Quadris	3.2	22.4	17.2	6932
Quadris	2.1	24.2	17.2	7490
ANOVA p-value	<0.0001	0.009	0.688	0.007

Quadris postemergence application timely = effective

Conclusions

Penthiopyrad seed treatment has potential when postemergence Quadris is used

Rank of penthiopyrad seed treatment out of 16 total treatments

	Postemergence Quadris application			
Site	Yes	No		
One	2	9		
Two	3	12		

Conclusions

Penthiopyrad seed treatment has potential when postemergence Quadris is used

In-furrow treatments performed well under severe early-season and mild late-season disease pressure

Postemergence Quadris must be put on prior to infection

Soil temperature, moisture, and pathogen population important

Population of *R. solani* in soil

High population density:

- Seedling damping-off, root rot can begin early in season, even if weather not ideal
- Fungicide Control: at-plant fungicide
 Seed treatment + postemergence fungicide
 In-furrow fungicide +/- postemergence fungicide (<65 F)

Low population density:

- Onset of disease is later in the season, especially if weather becomes ideal
- Fungicide Control: Postemergence (<65 F)

Quadris: Band vs. Aerial L.J. Smith, Univ. MN, NWROC, Crookston

Quadris applied: June 11, 2011 @ 4-6 If stage Rate applied for both banded and aerial 14.3 oz product/A in 22-inch rows Aerial (= 4.8 oz product/A in a 7-inch band) Applied in 5 GPA Banded: 7-inch band Applied in 7.1 GPA Moderate level of Rhizoctonia crown & root rot Harvested per treatment:

4 truck loads (6 rows x 2,580 ft /load)

Quadris: Band vs. Aerial L.J. Smith, Univ. Minn, NWROC, Crookston

Treatment	Yield (T/A)	Sugar (%)	RSA (Ibs/A)	RST (Ib/T)	Gross (\$/A)	Benefit (\$/A)
Control	25.3	19.24	9181	363	1691	0
Aerial	26.3	19.56	9704	369	1805	+114
Band (7")	26.7	19.95	10063	377	1893	+202

Band applications most effective for Rhizoctonia control
 Aerial applications may be necessary if fields are too wet

Thank you!

- Sugarbeet Research & Education Board MN and ND
- You the growers!
- Grower-cooperators
- Sugarbeet cooperatives and personnel
- Allied sugarbeet industries and personnel
- Colleagues at NDSU, USDA-ARS, Univ. Minnesota
- Technical support staff, graduate students, high school & college student workers