Improving Disease and Agronomic Management for Sugarbeet Production

Mohamed Khan Extension Sugarbeet Specialist Plant Pathology Department North Dakota State University & University of Minnesota

Update on NDSU Greenhouse Project

Thank You for Your Support!

lashMarket V6.0 - Editor: Alexis PATRY / apatry@cgb-france.fr OR wabcg1@gmail.com - www.wabcg.org

Tel. : + 33 1 44 69 41 12 / Fax: +33 1 42 93 42 37

Aphanomyces Root Rot

- Aphanomyces root rot continues to be a problem, particularly in warm, wet years
- > Use Aphanomyces tolerant varieties
- Treat seeds with tachigaren (20 g or 45 g)
- Research done by Dr. Carol Windels showed that application and incorporation of precipitated calcium carbonate (waste lime) in fields infected with A. cochlioides resulted in reduced disease infection which led to higher plant stand and higher recoverable sucrose per acre.
- > Use of waste lime is highly recommended.

Research – Dr. Carol Windels, University of Minnesota No lime

Tolerant variety 45 g Tachigaren

Tolerant variety 45 g Tachigaren

10 ton lime

Tolerant variety 45 g Tachigaren

15 ton lime

Tolerant variety 45 g Tachigaren

20 ton lime

Tolerant variety 45 g Tachigaren

Effect of Waste Lime on Sugarbeet at Breckenridge (2005-2008)

Lime (tons/A)	Har- vested Stand	Root Rot Rating ¹	Yield (T/A)	Sucrose concen- tration (%)	Recover- able Sucrose (lb/A)
0	58	4.9	13.2	14.5	3459
5	83	3.6	22.4	15.2	6120
10	93	3.3	24.5	15.3	6730
15	91	3.2	25.4	15.2	6898
20	96	3.2	26.0	15.2	7076

¹ Aph RRR on 0-7 scale (0=healthy, 7=root completely rotted)

Summary

- Spent lime significantly reduced Aphanomyces root rot.
- Plant stand, beets at harvest, yield and quality of sugarbeet increased with waste lime application.
- Benefits occurred with waste lime at 5 T/A but improved with increased rates.

Rhizomania Continues to be a Problem

Summary - Rhizomania

✓ In severely infested Rhizomania fields, use rhizomania resistant varieties with highest amount of rhizomania resistance for good disease control and acceptable levels of recoverable sucrose.

Fusarium Yellows

Disintegration of cells in the vascular tissues in advanced stage of Fusarium

Fusarium Yellows – Susceptible Variety

The respiration rates (mg CO_2/kg roots/hr) for diseased roots was 2 to 2.5 times that of healthy roots from the same field – Dr. Larry Campbell

Comparing Sucrose Content

20 days

Healthy	16.6 %
---------	---------------

Diseased 11.0 %

Summary – Fusarium Yellows

- Observe fields for symptoms of Fusarium Yellows. Send samples to NDSU or Crookston for confirmation of the disease.
- ✓ Use approved resistant varieties for fields identified with Fusarium.
- ✓ Use longer rotation to reduce build-up of Fusarium.
- Enhance field drainage and improve soil tilth.
Growers Field in Moorhead – Cercospora leaf spot

Cercospora Leaf Spot - 2010 > Planted May 19, inoculated 6 July **≻**26 July, 9, 20 August, 2 September **Headline – 9 fl oz Eminent** – 13 fl oz \rightarrow Inspire XT – 7 fl oz > Proline + Premier NIS – 5 oz + 0.125% v/v SuperTin 4L − 8 fl oz \rightarrow (Topsin + Super Tin) -7.6 fl oz + 6 fl oz

Efficacy of Fungicides Used Alone in Controlling *Cercospora beticola*

Treatments (a) 14 d	CLS	<u>RSA</u>
Nontreated Check	10.0	4,789
Proline + AG08011	4.8	9,000
Inspire XT + AG08011	6.0	8,770
Headline EC	6.3	7,540
Headline SC	6.3	7,828
SuperTin 4L	7.3	7,089
AgriTin	8.5	6,070
Eminent	8.3	6,670
LSD <i>P</i> =0.05	0.8	1,082

Nontreated Check

Proline

Inspire XT

Headline

SuperTin

Agritin

Eminent

Efficacy of Fungicides in Alternation at Controlling Cercospora beticola

Treatments @ 14 d	CLS	ТА	% S
Nontreated Check	10.0	22.7	13.5
(Topsin+SuperTin)/Proline/H-line	5.0	32.5	16.4
Headline / SuperTin / Proline	6.5	31.4	15.9
Inspire XT / SuperTin / Headline	6.8	28.6	16.0
Proline / SuperTin / Headline	7.3	28.9	15.4
Eminent /SuperTin / Headline	8.5	27.2	14.9
LSD $P=0.05$	<i>0.7</i>	2.5	0. 7

Efficacy of Fungicides in Alternation at Controlling Cercospora beticola

Treatments @ 14 d	<i>CLS(1-10)</i>	RSA (lb)
Nontreated Check	10.0	5,451
(Topsin+SuperTin)/Proline/H-line	5.0	9,901
Headline / SuperTin / Proline	6.5	9,164
Inspire XT / SuperTin / Headline	6.8	8,440
Proline / SuperTin / Headline	7.3	8,174
Eminent /SuperTin / Headline	8.5	7,402
LSD <i>P</i> =0.05	0.7	973

Is it Economical to Manage *Cercospora beticola* with Fungicides?

Treatments @ 14 d	Net Return \$/A
Nontreated Check	872
(Topsin+SuperTin)/Proline/H-line	1,497
Headline / SuperTin / Proline	1,400
Inspire XT / SuperTin / Headline	1,284
Proline / SuperTin / Headline	1,242
Eminent /SuperTin / Headline	1,118
LSD <i>P</i> =0.05	156

\$246-625

Nontreated Check

(SuperTin +Topsin)/Proline/Headline

Headline / SuperTin / Proline

Inspire / SuperTin / Headline

Proline / SuperTin / Headline

Eminent / SuperTin / Headline

Eminent/SuperTin/Headline/ SuperTin

Quadris: Inspire/SuperTin/Headline RSA 9557 lbs

Fungicide Efficacy on *C. beticola* sensitive and resistant to triazole fungicides

Efficacy of Individual Fungicides at Controlling *Cercospora beticola (C.b)*

Treatments	<u>Susce</u>	Susceptible C.b		Resistant C.b	
	CLS	RSA	CLS	RSA	
Control	10	4789	10	5444	
SuperTin 4L	7.3	7089	6.8	8077	
Headline	6.3	8094	6.3	9128	
Eminent	8. 3	6670	10	6169	
Proline + NIS	5.0	8094	8.5	7390	
Inspire XT	5.8	8269	7.5	8285	
LSD <i>P</i> =0.05	0.8	932	0.8	845	

Efficacy of Individual Fungicides at Controlling *Cercospora beticola (C.b)*

Treatments	Susce	ptible C.b	<u>Resist</u>	ant C.b	
	CLS	RSA	CLS	<u>RSA</u>	
Control	10	4789	10	5444	
SuperTin 4L	7.3	7089	6.8	8077	
Headline	6.3	8094	6.3	9128	
Eminent	8.3	6670	10	6169	
Proline + NIS	5.0	8094	8.5	7390	
Inspire XT	5.8	8269	7.5	8285	
LSD <i>P</i> =0.05	0.8	932	0.8	845	

Nontreated Check (Top picture -Sensitive isolate; bottom – resistant isolate)

Susceptible C. beticola isolates

EminentInspire XTProline

Resistant C. beticola isolates

SuperTin

Headline

Summary - CLS

- Conditions were favorable for CLS starting early in the season.
- Rotation of effective fungicides effectively controlled Cercospora leaf spot and resulted in significantly higher tonnage, quality and RSA than the nontreated check.
- Fungicide resistance is real do not overuse fungicides; do not use fungicides of similar chemistries back to back; always rotate different chemistries or mixtures of different chemistries.

Summary

3 applications

(Topsin+SuperTin) /Proline or Inspire/ Headline Headline / SuperTin / Proline Inspire XT / SuperTin / Headline Proline / SuperTin / Headline

2 applications (Topsin + Supertin) / Headline Inspire or Proline / Headline

1 application Use a different chemistry from last application in 2010

Plant Populations

Plant Populations for Conventional Sugarbeet

Treatment	Spacing	Plants per acre
Plants / 100' row	plants	
100	12"	23,760
125	9.6"	29,700
150	8"	35,640
175	6.8"	41,580
200	6"	47,520
225	5.3"	53,460

Plant Stand

Treatment Plants /100' row	Plant Count at Harvest	% of Thinned Stand
100	102	102
125	122	98
150	135	90
175	165	94
200	172	86
225	175	78

Recoverable Sugar / Acre - 2003

Plants /100'	Recoverable
row	Sugar Acre
100	5911
125	6473
150	6372
175	6493
200	6088
225	6054
LSD(P=0.05)	968

•No significant difference among treatments in RSA

•175 plants/100 ft row had highest RSA

Results - 2004 Recoverable Sucrose / Ton

Plants /100' row	Variety A	Variety B
100	294 d	295 cd
125	306 a-d	304 a-d
150	312 a-d	312 a-d
175	<i>321 a</i>	315 ab
200	314 abc	<i>319 a</i>
225	299 bcd	314 abc

Results - 2004 Recoverable Sucrose / A

Plants /100' row	Variety A	Variety B
100	7173 b	7798 ab
125	7753 ab	7737 ab
150	8225 a	8069 ab
175	<i>8342</i> a	<i>8227 a</i>
200	7849 ab	8030 ab
225	7550 ab	7755 ab

Roundup Ready Sugarbeet – 2010 (Early)

Plants /100'	Early Planting		
row	T/A	% S	RSA
50	19.1	15.3	5303
75	23.9	15.3	6671
100	25.9	15.3	7233
125	26.9	14.8	7258
150	27.7	14.8	7481
175	28.6	14.9	7862
200	28.4	15.1	7853
225	30.0	14.8	8108
LSD (P=0.05)	3.01	0.7	893

Roundup Ready Sugarbeet – 2010 (Late)

Plants /100' row	Late Planting		
	T/A	% S	RSA
50	16.3	13.9	4017
75	18.3	14.3	4656
100	17.5	14.1	4395
125	19.4	14.2	4976
150	20.3	14.1	5066
175	21.1	14.4	5502
200	22.6	14.5	5928
225	21.6	14.4	5636
LSD (P=0.05)	3.01	0.7	893

Roundup Ready Sugarbeet - 2010

Plants /100' row	Early Planting			Late Planting		
	T/A	% S	RSA	T/A	% S	RSA
50	19.1	15.3	5303	16.3	13.9	4017
75	23.9	15.3	6671	18.3	14.3	4656
100	25.9	15.3	7233	17.5	14.1	4395
125	26.9	14.8	7258	19.4	14.2	4976
150	27.7	14.8	7481	20.3	14.1	5066
175	28.6	14.9	7862	21.1	14.4	5502
200	28.4	15.1	7853	22.6	14.5	5928
225	30.0	14.8	8108	21.6	14.4	5636
LSD (P=0.05)	3.01	0.7	893	3.01	0.7	893

Conclusion – Conventional Variety

- Research indicated that a plant population of 175 plants / 100 ft row would produce the highest recoverable sucrose per acre with no adverse impact on quality when planting <u>conventional sugarbeet varieties</u>.
- ➢ If planting conventional variety, a high plant population will cover the ground early and may help to reduce weed populations.

Conclusion – Roundup Ready Variety (If Legal to Plant)

- Research indicated that a plant population of 175 to 225 plants / 100 ft row would produce the highest recoverable sucrose per acre with no adverse impact on quality when planting <u>Roundup Ready sugarbeet</u> <u>varieties</u>.
- Plant as early as possible for highest yield and quality.
- Research indicated that an early planted field with a population of 75 plants/100 ft row should not be replanted.

Acknowledgements – Thank You

- Growers through the SBREB for funding my research and educational programs.
- Seed, chemical and allied industries, and agriculturists and consultants for assistance.
- Kevin Ekzler, Vince Ulstad, and Kevin Nelson for research to be conducted on their farms.
- Personnel at ACSC tare laboratory, East Grand Forks.
- **>** Colleagues at NDSU for assistance in harvesting.
- > Aaron Carlson conducting trials.